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UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en-

rollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are 160

faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These

range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-

space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-

neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-

puter Science. Within these disciplines there are well equipped laboratories for conducting highly

specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only

graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student

enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,

Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts

and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-

neering research program. The School of Engineering and Applied Science is an integral part of this

University community which provides opportunities for interdisciplinary work in pursuit of the basic goals

of education, research, and public service.
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INTRODUCTION

A theory has been developed at the Universityof Virginia which explains the effects

of including an ideal predictor in the forward loop of a linear error-sampled system. It has

been shown that the presence of this ideal predictor tends to stabilize the class of

systems considered. A prediction controller is merely a system which anticipates a signal

or part of a signal before it actually occurs. It is understood that an exact prediction

controller is physically unrealizable. However, in systems where the input tends to be

repetitive or limited, (i. e. not random) near ideal prediction is possible. In order for the

controller to act as a stability compensator, the predictor must be designed in a way that

allows it to learn the expected error response of the system. In this way, an unstable

system will become stable by including the predicted error in the system transfer function.

Previous and current prediction controllers include pattern recognition

developments and fast-time simulation which are applicable to the analysis of linear

sampled data type systems. The use of pattern recognition techniques, along with a

template matching scheme, has been proposed as one realizable type of near-ideal

prediction. Since many, if not most, systems are repeatedly subjected to similar inputs,

it was proposed that an adaptive mechanism be used to "learn" the correct predicted

error response. Once the system has learned the response of all the expected inputs,

it is necessary only to recognize the type of input with a template matching mechanism

and then to use the correct predicted error to drive the system.

This report will suggest analternate approach to the realizationof a near-idealerror

prediction controller, one designed using Neural Networks. Neural Networks are good
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at recognizing patterns such as system responses and the back-propagation architecture

makes use of a template matching scheme. In using this type of error prediction, it is

assumed that the system error responses be known for a particular input and modeled

plant. These responses are used in the error prediction controller. An analysis was done

on the general dynamic behavior that results from including a digital error predictor in a

control loop and these results were compared to those including the near-ideal Neural

Network error predictor. This analysis was done for a second and third order system.

BACK-PROPAGATION NEURAL NETWORK

A neural network, as defined by Hecht-Nielsen, is a parallel distributed information

processing structure consisting of processing elements (which can possess a local

memory and can carry out localized information processing operations) interconnected

together with unidirectional signal channels called connections. Each processing element

has a single output connection which branches into as many collateral connections as

desired (each carrying the same signal - the processing element output signal). The

processing element output signal can be of any mathematical type desired (sigmoid in

this case). All of the processing that goes on within each processing element must be

completely local.

A three layer back-propagation neural network was used to implement a near-ideal

error predictor controller. Back-propagation is the most widely used neural network

architecture. It is a hierarchical design consisting of fully interconnected layers of

processing units or neurons. Back-propagation is a mapping architecture. The real

power of the back-propagation rule comes from its assignment of deltas to hidden layers
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that receive no direct feedback from training patterns in the outside world. These deltas,

in turn, influence the modification of weights to connections leading into the hidden layers.

The delta for a hidden layer is computed as follows

_pj = f'j(lpj) Z _'pk Wkj
k

Notice this definition uses the derivative to its squashing function (sigmoid) multiplied by

the weighted sum of the deltas to which the neuron sends activation via outgoing

connections.

The basic idea behind this computation of deltas for internal neurons is to

propagate back through the system errors that are based on observed discrepancies

between the values of desired output neurons and a training pattern. The deltas are first

computed for the output neurons, and these are then propagated backward to all layers

pointing to the output neuron in the layer below. These neurons, in turn, propagate their

received deltas backward to neurons that point to them, and so on, until the input level

is reached. These deltas then drive the networks's weight changes in much the same

way as with the basic delta rule described by Hecht-Nielsen.

In scheduling a network's operation during training, two passes are needed to

complete one iteration. The first is the forward pass which begins by inserting the inputs

into layer 1 of the neural network. This is often done by using a input vector (I). The

processing elements of the first layer then transmit all components of the input vector to

all of the units of the second layer. This is continued until the final layer outputs the

components of the output vector (O) which represent the network's estimate of the

desired output vector (D). At this point the backward pass is initiated. The output suns





of the final layer compute their 5k's and transmit these to their planets. The planets then

w_.ld
update their delta values of weights and then transmit the values kij Ski to the suns of

the previous row. This process continues until the planets of the first hidden layer have

been updated. The cycle can then be repeated. Iterationsare repeated until the network

has satisfied a predetermined level of performance. Once training is complete, actual

operation on test sets does not require the use of the backward pass.

In training the neural network for near-ideal error prediction, the input vector was

the integer number of samples, p, represented as a binary number of l's and O's. The

desired output vector (D), was the predicted error values needed for that particular

number of samples for a given Gp(s)and input. Only unit step inputs were analyzed. The

output vector values were scaled between 0 and 1 and then weighted back upon

completion of training. The predetermined levelof performance was within .001 accuracy.

RESULTS

An analysis was done on a second and third order system, and unit step

responses of both these systems without prediction compensation were obtained. Both

systems were very unstable. There the results of system output for both plant systems

using varying degrees of prediction compensation were obtained. Only the first nine

sampling instants were considered. Results for ideal prediction and near-ideal prediction

using the neural network were compared. The results were very close with very good

accuracy for one step prediction. Second and third step prediction using the neural

network does not stabilize the system. Unit step responses of the near-ideal error
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prediction compensated systems of the second and third order systems respectively with

one step prediction were obtained.

CONCLUSION

An alternate approach to the realization of a near-ideal error prediction controller,

one designed using Neural Networks was presented. The unit step response of two

different plants was analyzed by comparing responses with and without prediction

compensation. Ideal versus near-ideal error prediction results were also presented. For

the two systems chosen, one step prediction did improve the unit step response. It

appeared that using two or three step prediction did not improve the system response

to a unit step.

Further work should investigate the effect of using other inputs such as ramp

functions. Also, it would be desirable to be able to simulate the prediction compensation

transfer function in its entirety which takes as inputs the plant and predicted error.

A comprehensive report containing descriptions, data and graphics is available

from the Department of Electrical Engineering, University of Virginia.
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